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We present an analysis of multilayer Markov chains and apply the results to a model of
a tethered polymer chain in shear flow. We find that the stationary probability measure
in the direction of the flow is nonmonotonic, and has several maxima and minima for
sufficiently high shear rates. This is in agreement with the experimental observation of
cyclic dynamics for such polymer systems. Estimates for the stationary variance and
expectation value were obtained and showed to be in accordance with our numerical
results.
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1. INTRODUCTION

The static mechanical properties of DNA-molecules have been studied extensively
since the 1960s. Analogies between random walks and polymer configurations
have been exploited by a number of authors mostly in the case of static polymers.
Although there are still unresolved problems for polymers tethered to a wall in
equilibrium conditions, (6) the attention has shifted to polymers in flow conditions.
Recently, a large number of studies about the interesting (stretching) dynamics
that DNA chains, and polymer chains in general, can exhibit in (shear-)flow have
recently appeared. (1−−4,7−10) These investigations have revealed a host of interesting
phenomena, such as molecular individualism, (10) tumbling, (9) and shear-enhanced
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fluctuations. (1) Apart from the experimental works, most efforts were made in the
study of the flexible chains (2,4,7) with a finite length and in that of the wormlike
chain model, (1,5) using either scaling approximations (3,8) or numerical simulations.
(1) Here we follow a complementary approach and develop a general stochastic
model, that consists of two coupled Markov processes: a driven process in the x-
and an ordinary Ornstein-Uhlenbeck process in the y-direction. The model that
we put forward is shown to give a good description of tethered polymers in shear
flow. Moreover, besides being important for a tethered polymer in shear flow, the
model has interesting mathematical properties that justify a detailed mathematical
study.

We consider as a first model simple random walk with drift proportional
to the height. In this model the random walk becomes transient as soon as the
drift parameter is non-zero. We give precise estimates of the average position and
the variance of the position as a function of time. The second model is more
realistic, i.e., considers an underlying (e.g. harmonic) potential on which a drift
in the x-direction, proportional to the height y is superimposed. This model is
roughly speaking behaving as a random walk on a finite set, driven by a stationary
Markov chain (what we call a multilayer Markov chain). We find that when the
underlying potential is sufficiently increasing, a unique stationary measure exist.
For the case of a harmonic potential, the probability density of this measure is
calculated numerically and is shown to have multiple maxima when the drift κ

is sufficiently strong. This can account for the experimentally observed cyclic
dynamics of tethered DNA chains.

This paper is organized as follows. In Sec. 2 we introduce a simple random
walk model with drift and show that for all κ > 0 this random walk is transient.
Next in Sec. 3, we consider a driven random walk in a potential and show that under
certain conditions this process has a unique stationary measure. The harmonic case
is treated separately in Sec. 4. In Sec. 5, the numerical calculations and results for
a harmonic potential are presented. Analytical results for two-layer Markov chains
are derived in Sec. 6 and Sec. 7 is devoted to summary and discussion.

2. SIMPLE RANDOM WALK MODEL

In this section we consider the continuous-time random walk on Z
2, with

jump rates given by

r ((x, y), (x + 1, y)) = eκ|y|

r ((x, y), (x − 1, y)) = 1

r ((x, y), (x, y + 1)) = 1 (2.1)

r ((x, y), (x, y − 1)) = 1
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In words, this means that at height y, the walker drifts to the right at rate eκ|y|,
all other jump rates are one. The following representation of this random walk
is useful. For every y ∈ Z we consider a rate one Poisson process Nt and an
independent Poisson process with rate eκ|y|, notation N y

t . Let St denote the position
of the continuous time simple random walk (with jump rate 1) starting at the origin
at time t . Let τk, k ∈ N denote the successive jump times of this random walk St .
Then, for the process (Xt , Yt ), defined by the rates (2.2) and starting at the origin,
we have that Yt is distributed as St , and conditioned on {St : t ≥ 0}, Xt equals

Xt =
∑

k:τk+1≤t

N
Sτk
τk+1−τk

− Nτk+1−τk =
∫ t

0

(
d N Ss

s − d Ns

)
(2.2)

The following proposition is a consequence of this representation.

Proposition 2.1. Denote λ(x) = eκ|x |. For the conditional expectation we have

E{Xt | Ss, s ≤ t} =
∑

k:τk+1≤t

(λ(Sτk ) − 1)(τk+1 − τk) =
∫ t

0
(λ(Ss) − 1) ds (2.3)

For the conditional variance we have

V (Xt | Ss, s ≤ t) =
⎛

⎝
∑

k:τk+1≤t

(λ(Sτk ) − 1)(τk+1 − τk)

⎞

⎠
2

=
∫ t

0
(λ(Ss) + 1) ds

(2.4)

Proof: The first equality in both formulas follows from (2.2), the independence
of the increments in the sum, and the independence of N y

t from Nt . The second
equality is immediate since τk are the jump-times of {St : t ≥ 0} �

Taking expectations over St (always denoted by Ẽx , where x ∈ Z is the starting
point), then gives the following:

Proposition 2.2. With the notation of Proposition 2.1 we have

E(Xt ) =
∫ t

0
Ẽ0(eκ|Ss | − 1) ds = 2

∫ t

0
Ẽ0(eκSs − 1)I (Ss > 0)) ds (2.5)

and

V (Xt ) =
∫ t

0
Ẽ0(eκ|Ss | + 1) ds = 2

∫ t

0
Ẽ0(eκSs + 1)I (Ss > 0))

+ 2
∫ t

0
Ẽ0(I (Ss = 0) ds (2.6)
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As a consequence we have the following estimates

1. For the expectation:

e2t sinh2(κ/2) − 1

sinh2(κ/2)
− 2t ≤ E0(Xt ) ≤ e2t sinh2(κ/2) − 1

sinh2(κ/2)

− 2t + min

{
4

3
κt3/2, 2t

}
(2.7)

2. For the variance:

e2t sinh2(κ/2) − 1

sinh2(κ/2)
+ 2t ≤ V (Xt ) ≤ e2t sinh2(κ/2) − 1

sinh2(κ/2)
+ 6t (2.8)

Proof: (2.5) and (2.6) follow immediately from Proposition 2.1 and the symme-
try of the simple random walk St = −St (in distribution). Write

E0(Xt ) =
∫ t

0
Ẽ0(eκ|Ss | − 1) ds

= 2
∫ t

0
Ẽ0

(
(eκSs − 1)(I (Ss > 0))

)
ds

= 2
∫ t

0
Ẽ0(eκSs − 1)ds − 2

∫ t

0
Ẽ0((eκSs − 1)(I (Ss ≤ 0)))ds

=
(

2(et(cosh κ−1) − 1)

cosh κ − 1
− 2t

)
+ εt (2.9)

with

εt = (−2)
∫ t

0
Ẽ0((eκSs − 1)(I (Ss ≤ 0)))ds (2.10)

and where we used the identity

Ẽ0(eκSt ) = E(cosh κ)Nt ) = exp (t(cosh κ − 1)) (2.11)

where the second expectation is over the Poisson process only. Now estimate

|Ẽ0((eκSs − 1)I (Ss ≤ 0))| = Ẽ0

∣∣∣∣

((
κ

∫ 0

Ss

eξκdξ

)
I (Ss ≤ 0)

)∣∣∣∣

≤ κẼ0(|Ss |I (Ss ≤ 0)) ≤ κ

√
Ẽ0

(
S2

s

)

= κ
√

s (2.12)
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This gives

εt ≤ 4

3
κt3/2 (2.13)

On the other hand, we have the simple estimate

0 ≤ εt ≤ 2t (2.14)

Combination of (2.9), (2.10), (2.13), and (2.14) gives the estimate for E(Xt ). The
estimation of the variance goes along the same line and is left to the reader. �

Another consequence of the representation (2.2) is the fact that we can couple
the processes with κ < κ ′ such that Xt ≤ X ′

t for all t > 0, with probability one
in the coupling. This means that there exists a process (the so-called “coupled
process” or “coupling”) {(X̃t , X̃ ′

t ) : t ≥ 0} with first marginal X̃t = Xt in distri-
bution and second marginal X̃ ′

t = X ′
t in distribution, and such that X̃t ≤ X̃ ′

t for
all t > 0, with probability one.

Indeed, the Poisson process N St
t has intensity λ(St ), which is a monotonically

increasing function of κ . In fact we have more, as is formulated in the following
theorem.

Theorem 2.1. Suppose f ≤ g are two strictly positive functions on Z. Define
the rates

r f ((x, y), (x + 1, y)) = f (y)

r f ((x, y), (x − 1, y)) = 1

r f ((x, y), (x, y + 1)) = 1 (2.15)

r f ((x, y), (x, y − 1)) = 1

and analogously for rg. Then for the corresponding random walks (X f
t , Y f

t ),
(X g

t , Y g
t ) there exists a coupling (X1

t , Y 1
t ), (X2

t , Y 2
t ) such that X1

t ≤ X2
t for all t ,

Y 1
t = Y 2

t for all t with probability one.

Proof: As before, let St denote simple random walk in continuous time. Suppose
that f ≤ g are strictly positive functions on Z, and denote by N f (Ss)s (resp.
N g(Ss)s the jump process with compensator

∫ s
0 f (Ss) ds (resp.

∫ s
0 g(Ss) ds). Since

the compensators dominate each other, there exists a coupling such that N f (Ss)s ≤
N g(Ss)s with probability one. This coupling then defines the coupling of the
theorem via the representation (2.2). �

As a consequence we have
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Theorem 2.2. For all κ > 0, the random walk (Xt , Yt ) with rates (2.2) is tran-
sient.

Proof: Replace the rates by r f , where f (x) = 0 for x = 0 and f (x) = eκ for
x �= 0. By Theorem 2.1, it suffices to see that for this random walk (with rates r f ),
Xt → ∞ almost surely. The only (minor) complication with this random walk is
that its drift is zero on the X -axis, on all other horizontal lines the drift is bounded
from below by a strictly positive constant. So, let τn, n ∈ N denote the successive
times at which the random walk is on the X -axis. If this is a finite sequence,
then there is nothing to prove, because if the walk leaves the X -axis it has a drift
bounded from below. Since upon an excursion in the upper-halfplane say the drift
is bounded from below, we have

E
(
Xτn − Xτn+1 |Xτn

)
> c

where c > 0 does not depend on n. Therefore Xτn → ∞ as n → ∞, which gives
Xt → ∞ almost surely in the process with rates r f . �

As a final result in this section, the following proposition shows that in the
current model, the “polymer” will be more and more stretched in the X direction.
Remember that in (Xt , Yt ), Yt is behaving as the continuous-time simple random
walk St .

Proposition 2.3. For all t > 0, there exists αt > 0 not depending on κ such that

E0

(
Xt

1 + S2
t

)
≥ (eκ − 1)αt (2.16)

Proof: Denote λ(x) = eκ|x |. From (2.3) we obtain

E0

(
Xt

1 + S2
t

)
= E0

(∫ t
0 (λ(Ss) − 1)ds

1 + S2
t

)

≥ (eκ − 1)E0

(
(
∫ t

0 I (Ss �= 0))

1 + S2
t

)
(2.17)

�

3. POSITIVE RECURRENT RANDOM WALK CASE

In the random walk model of Sec. 2, the polymer can become arbitrary long.
A more realistic situation is met when the polymer has some equilibrium length.
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This means that the “unperturbed process,” corresponding to κ = 0 is a random
walk with some reversible equilibrium distribution.

More precisely, we choose the following rates.

rκ
β ((x, y), (x + 1, y)) = e−β(V κ

y (x+1)−V κ
y (x))

rκ
β ((x, y), (x − 1, y)) = e−β(V κ

y (x−1)−V κ
y (x))

rκ
β ((x, y), (x, y + 1)) = e−β(V (y+1)−V (y)) (3.1)

rκ
β ((x, y), (x, y − 1)) = e−β(V (y−1)−V (y))

Where we choose

V κ
y (x) = V 0(x − κ|y|) (3.2)

In words, V is the potential governing the Y -motion, and V 0 is the potential
governing the X -motion at ground level y = 0.

The presence of κ > 0 induces a shift in the equilibrium position of the
potential V 0, depending on the height y.

This is the general picture which we consider in this section: the Y -process is
a reversible Markov chain with some equilibrium potential V : Z → R. At height
y, the X -process moves as a reversible Markov chain with equilibrium potential
V 0(· − κ|y|), i.e., the “original” equilibrium potential V 0 shifted over κ|y|. In
principle the potentials for the Y -motion and X -motion can be different. A simple
and natural choice is the harmonic potential

V 0(x) = x2

2
, V (y) = y2

2

For technical reasons we will treat this case in continuous space, and deal in
this section with potentials V (y) that increase faster as y → ∞. In the following
section we will consider the harmonic case in continuous space context.

The presence of the shifts in the potential landscape of the X -process as soon
as κ �= 0 is responsible for the breaking of detailed balance, i.e., as soon as κ �= 0,
the process (Xt , Yt ) does not have a reversible measure.

Remember however that the the jumps in the y direction have a rate that does
not depend on x . This is a key simplifying property which leads to the following.

Proposition 3.1. Let Yt denote the process with generator

L2 f (y) = e−β(V (y+1)−V (y))( f (y + 1) − f (y))

+ e−β(V (y−1)−V (y))( f (y − 1) − f (y))
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Then process (Xt , Yt ) with rates (3.1) has Yt as second marginal. In particular, if
Y0 is distributed according to the stationary distribution of the Y process µ(y) =
e−βy2/2, then Yt is a stationary process with single time marginals µ.

Proof: Let f (x, y) = ϕ(y) be a function depending on y only. Let Lκ
β be the

generator corresponding to the rates rκ
β . We then have

L f = L2ϕ (3.3)

which is once again a function of y only. Therefore, iterated application of L give

E(x,y) f (Xt , Yt ) = (et L2ϕ)(y) (3.4)

�

The picture of (Xt , Yt ) is the following: we have the autonomous random
walk Yt with equilibrium distribution µ, and in between two successive jumps of
this random walk, the X process is a random walk with equilibrium distribution
depending on the height y, with average equilibrium position κ|y|. Let us make
this more precise and give an explicit formula for the conditional expectation of
increments of the X process (which is not a Markov process). We introduce the
notation c+

y (x) resp. c−
y (x) for the rate to jump in the plus resp. minus direction

for the random walk with rates rκ
β ((x, y), (x + 1, y)), rκ

β ((x, y), (x − 1, y)). This
is a random walk ξ

y
t on Z where y acts as a parameter in the rates. As long as in

process (Xt , Yt ), Yt does not jump, i.e, Yt = y, Xt is evolving as this random walk
with rates c+

y (x) resp. c−
y (x). We denote by L y the generator of this process, i.e.,

L y f (x) = c+
y (x)( f (x + 1) − f (x)) + c−

y (x)( f (x − 1) − f (x)) (3.5)

Let Yn, n ∈ N, τn, n ∈ N denote successive jump times and positions at the jump
times (Tn = Tτn ) of the (autonomous) random walk Yt . Let us denote Xn = Xτn .
Then conditioned on Y, τ , Xn is a Markov process with

E(Xn − Xn−1|Xn−1, Y, τ ) = E
y
Xi−1

∫ τi

τi−1

(
c+

Yi−1

(
ξ

y
s−τi−1

) − c−
Yi−1

(
ξ

y
s−τi−1

))

where E
y
Xi−1

denotes expectation over the random walk with rates c+
y (x), c−

y (x)
starting from Xi−1. Remember that τi are the jump times of Yt . Therefore, condi-
tioned on the positions {Yn : n ∈ N}, the increments τi − τi−1 are i.i.d. exponential
random variables with parameter λ = λ(Yi−1), where

λ(y) = e−β(V (y+1)−V (y)) + e−β(V (y−1)−V (y))
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is the total jump rate at height y. Therefore we can take the expectation over τ

variables in (3.6), and obtain

E(Xi − Xi−1

∣∣Xi−1 = x, Y ) = E
Yi−1
x

(∫ ∞

0
e−λ(Yi−1)s

((
c+

Yi−1
− c−

Yi−1

)(
ξ y

s

)))
(3.6)

This leads then to the following

Proposition 3.2. Suppose Yt is distributed according to its stationary measure
µ. Let Xn denote the position of the X coordinate of (Xt , Yt ) at the moment of the
n-th jump of Yt . Then we have the following formula

E[Xn − Xn−1

∣∣Xn−1] =
∑

y

µ(y)Ey
Xn−1

∫ ∞

0
e−λ(y)s(c+

y − c−
y )

(
ξ y

s

)

=
∑

y

µ(y)(λ(y) − L y)−1(c+
y − c−

y )(Xn−1) (3.7)

Proof: This follows from taking the expectation over the stationary process Y
in (3.6). �

3.1. Stationary Measure

In this subsection we prove that if the potential V governing the Y -motion is
increasing fast enough as y → ∞ then there exists a unique stationary measure
for the process (Xt , Yt ) with generator corresponding to the rates (3.1).

Theorem 3.1. Choose V 0(x) = 1
2 x2 and suppose that for some ε > 0

∑

y

eβκ2(1+ε)|y|2 e−βV (y) < ∞ (3.8)

Then the process (Xt , Yt ) has a unique stationary measure µ with finite exponential
moments for both x and y coordinate, i.e., for all s, t ∈ R,

∑

x,y

µ(x, y)etx+sy < ∞ (3.9)

Proof: We make a process with rates r̃ having a unique reversible measure such
that at every site (x, y) the drift towards (x + 1, y) is bigger than in the process
with rates (3.1). This is clearly sufficient. Indeed, if the process with rates (3.1)
had no stationary measure, then the only reason is that the X -coordinate would
drift to +∞, which is not possible if such a domination with a reversible process
can be obtained. Indeed, in that case we can couple the processes with rates (3.1)
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and r̃ such that in the first process the number of jumps in the positive x direction
is almost surely smaller than in the second process, i.e., if both processes start
at the same location, in the coupling X (1)

t ≤ X (2)
t for all t > 0, with probability

one. Therefore, a stationary measure exists, and the uniqueness follows from
irreducibility. The auxiliary process with rates r̃ corresponds to a potential B
which satisfies

B(x + 1, y) − B(x, y) ≤ 2(−κ|y| + x) (3.10)

ensuring the domination of the rate to jump in the positive x direction:

rβ((x, y), (x + 1, y)) ≤ r̃ ((x, y), (x + 1, y)) := e− 1
2 (β(B(x+1,y)−B(x,y)))

So a possible choice is

B(x, y) = B(0, y) − 2κ|y|x + (x + 1)2 (3.11)

where

B(0, y) = V (y)

is the potential governing the y-motion. In that case, using (3.8), we obtain

Z :=
∑

x,y

e−βB(x,y) =
∑

y

e−βV (y)
∑

x

e−β(x+1)2+2κβ|y|x

≤ C(ε, β)
∑

y

e−βV (y)eβκ2(1+ε)|y|2 < ∞ (3.12)

Therefore, µ(x, y) = e−βB(x,y)

Z is a reversible probability measure for the walk with
rates r̃ .

To see (3.9), remark that for t = 0, this is clear since the Y -marginal of the
stationary measure is e−β(y), whereas for s = 0 it follows from (3.11), µ(x, y) =
e−βB(x,y)/Z and the property X (1)

t ≤ X (2)
t for all t > 0 with probability one in the

coupling. �

Remark 3.1. If (3.8) is not satisfied, then there does not exist a potential B such
that the rates (3.1) can be dominated by the reversible rates r̃ . Indeed, such a
potential should satisfy

B(x + 1, y) − B(x, y) ≤ 2(−κ|y| + x)

and V (0, y) = V (y), which implies that
∑

y

e−βV (y)
∑

x

e−βB(x,y) = ∞
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This does however not exclude the possibility that the process with rates (3.1) still
has a stationary (non-reversible) measure.

4. HARMONIC CASE

For the case of a quadratic potential V (y) = y2, we can apply Theorem 3.1
only if κ ≤ 1. Therefore, in order to cover also the other values of κ , in this
section we describe this case in continuous space, i.e., using stochastic differential
equations. This in contrast to the discrete random walk case has the advantage of
giving more explicit formulas. The equations are

d Xt = −(Xt − κ|Yt |) dt + d Bt (4.1)

dYt = −Yt dt + d B ′
t

where B and B ′ are independent Brownian motions. In words this means that
Yt is an Ornstein-Uhlenbeck (OU) process corresponding to the quadratic poten-
tial V (y) = y2. Given Yt = y, Xt moves as a OU-process corresponding to the
quadratic potential Vy(x) = (x − κ|y|)2. Using (4.1) and Ito’s formula, we obtain,

E f (Xt ) − E f (X0) = −
∫ t

0
E( f ′(Xs)(Xs − κ|Ys |)) ds + 1

2

∫ t

0
f ′′(Xs) ds (4.2)

It is then a simple exercise to see that

E(0,0)(Xt ) = κe−t

∫ t

0
es

E0|Ys |ds (4.3)

where the expectation E0 is over the Y -process only, and E(0,0) denotes expectation
in the process (Xt , Yt ) starting from (0, 0). This formula shows that the expectation
of Xt is uniformly bounded in time and increases linearly with κ . Therefore, this
process has a stationary distribution µ(dxdy) with

∫
xµ(dxdy) = lim

t→∞ E(0,0)(Xt ) = κ
1√
π

∫ ∞

−∞
|y|e−y2

dy = κ√
π

(4.4)

where we used that e−y2
/
√

π is the unique stationary distribution of the Y -process.
For the n-th moment, n ≥ 2, we obtain the following recursion from (4.2):

µ(xn) − κµ(|y|xn−1) − 1

2
(n − 1)µ(xn−2) = 0 (4.5)

Using Hölder’s inequality with p = n/(n − 1), q = n, this leads to

µ(xn) − κm1/n
n µ(xn)

n−1
n − 1

2
(n − 1)µ(xn−2) ≤ 0 (4.6)
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where mn = 1√
π

∫ ∞
−∞ |y|ne−y2

are the stationary moments of the OU-process. For
n = 2, this leads to the following inequality for the stationary variance of x

0 ≤ µ(x2) − µ(x)2 ≤ 1

2
+ κ2

(
1

4
− 1

π

)
+ κ

4

√
κ2 + 8 (4.7)

5. NUMERICAL RESULTS

In this section we will present numerical results of the investigations of the
random walk with rates given by Eqs. (2.2). We numerically solve for the Markov
process that is generated by these rates, starting at t = 0 in (x0, y0) = (0, 0). We
use an alternating direction implicit (ADI) algorithm to guarantee stability and
second order accuracy in the time-step. In the ADI-algorithm for the numerical
solution of the Markov process with rates (2.2) we set the time step 
t = 10−4. In
Fig. 1(a), we present the probability measure for κ = 0, and β = 1, that is, there is
no flow and the average chain length squared, given by the total variance in x and
y: E(X2

t + Y 2
t ),≈ 1. Of course, the probability measure µ is symmetric in both

x- and y- directions and hence E(Xt ) = E(Yt ) = 0. In Fig. 1(b) the probability
measure for κ = 8.0 is shown. Here we see a clear asymmetry arising, which is
due to the shear force that is pushing the polymer chain on average to the right.
For each layer, there is a probability for the end of the polymer chain to occupy in
that layer a position with x-coordinate X . The maximum probability, however, is
dependent on the y-coordinate of the chain end. An interesting question is now in
what way E(Xt ) depends on the shear rate κ and to what kind of second moments
the probability distribution gives rise to. In Fig. 2 the x-position of the chain end
is depicted as a function of κ . It is seen to increase approximately linearly with κ .
This linear scaling of E(Xt ) with κ was also derived in Sec. 4 in the continuous
case. This scaling relation can physically be explained as follows. The average
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Fig. 1. A three-dimensional plot of the probability measure µ(x, y) = P(x, y) for β = 1.0 and κ = 0
(Gaussian symmetric shape) in (a) and β = 1.0 and κ = 8.0 in (b). In (b) the maxima in the probability
density shift to higher values of x for larger values of y.
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Fig. 2. (color online) For fixed β = 1, and varying shear rates κ , E(Xt ) = 〈x(t)〉 of the process with
rates (2.2) is depicted. A linear increase of 〈x(t)〉 with κ is manifest.

y-coordinate of chain end E(Yt ) = 0 and the deviations around y = 0 do not
depend on κ . This implies that the time spent in a particular layer does not depend
on κ . So if the shear rate is increased, this implies that the chain end will feel a
“force” that is proportional to κ , because the distribution over the different layers
is independent of κ . The only consequence of the larger value of κ is the greater
extension of the polymer chain.

A more interesting quantity is the variance of the probability density function
in the x-direction. As noted before, the variance in the y-direction is always
constant and its value is given by the variance in the x-direction for κ = 0 and
equals 0.49. The variance in the x-direction E(X2

t ) is shown in Fig. 3 as a solid
curve with dots denoting the computer simulation results. To illustrate that the
variance increases more rapid than quadratically with κ , we plotted a parabola
that fits quite well to the curve for small values of κ , but is clearly seen to deviate
significantly from the numerically obtained curve for larger values of κ . This
behavior of the variance as a function of κ illustrates that the coupling between
the Markov processes in the x- and y-direction can lead to non-trivial behavior
and indeed greatly enhanced fluctuations. This has in fact also been observed in
experiments by Doyle et al. (1) and was heuristically explained in Refs. 3 and 7.

An even better understanding of this phenomenon is obtained if the reduced
probability measure in the x-direction, that is, µX (x) = ∫ ∞

−∞ µ(x, y) dy, is inves-
tigated. In Fig. 4, we present µX (x), for three different values of κ . From Fig. 4
the non-monotonicity of the µX (x) is conspicuous. For small values of the shear
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Fig. 3. (color online) The variance in the x-direction is plotted, manifest is that it is systematically
above its mean square quadratic fit.
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Fig. 4. (color online) The reduced probability in the x-direction µX (x) for three different values of
κ . The stars correspond to κ = 1.0, the diamonds to κ = 5, and the squares to κ = 10.0. For larger
values of κ multiple maxima in µX (x) develop.
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rate κ , we observe a shift and an asymmetry in the measure as compared to the
κ = 0 result. For higher values of κ we find that the stationary probability measure
develops a “hole” in the distribution and for still higher values of κ subsequently
several maxima and minima are displayed. These results strongly suggest a phys-
ical scenario that is in correspondence with the findings of Refs. 1, 3, 7 about the
cyclic dynamics of tethered DNA chains in shear flow. There it was reported that
a tethered DNA chain exhibits large fluctuations in chain length in the direction
of the shear velocity. Furthermore, it was observed that the angle between the
polymer chain and the wall shows more or less periodic variations. Our model
gives an explanation for the observed large temporal fluctuations in terms of a
probability of the chain end to be at a specific position x . There are certain regions
where the chain end can be found with rather high probability. The chain end will
then make jumps between these high probability regions with certain rates. This
offers an explanation for the large chain end excursions and the corresponding
length fluctuations that are typically seen in the experiments.

6. GENERAL STRUCTURE AND SIMPLE EXAMPLES

6.1. A Four State Example

In our process (Xt , Yt ), Yt is an autonomous Markov chain with a known
stationary distribution, and Xt is driven by the state of Yt . As soon as Yt is a
non-trivial (reversible) Markov chain, and Xt depends in a non-trivial way on the
state Yt , then the resulting process will loose its reversibility. In this section we
give simple examples of such a process in which we can explicitly compute the
stationary distribution, and in particular see that non-trivial currents arise as soon
as Yt is a non-trivial process.

In the simplest set-up, both X and Y have two possible states. For the (X, Y )-
process, we then choose the transition rates c((00), (10)) = c((10), (00)) = 1, and
c((01), (11)) = eκ and c((11), (10)) = 1. An elementary computation gives the
stationary measure µ of the corresponding continuous time Markov chain (Xt , Yt ):

µ({(0, 0)}) = 3 + eκ

10 + 6eκ

µ({(0, 1)}) = 2

5 + 3eκ

µ({(1, 0)}) = 1 + eκ

5 + 3eκ
(6.1)

µ({(1, 1)}) = 3eκ + 1

10 + 6eκ

The marginal distribution of Y is of course µ(Y = 1) = µ(Y = 0) = 1/2, but as
soon as κ �= 0 this stationary distribution µ is not reversible, as can be seen e.g.
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from the expectation of the stationary current over the bond (01) − (11):

µ(J0) = µ(00) − µ(10) = eκ − 1

10 + 6eκ
= −µ(J1) = µ(01)eκ − µ(11)

In the limit κ → ∞ the current saturates at the value 1/6. For the stationary
expectation of the x-coordinate we find

µ(X ) = lim
t→∞ E(x,y)(Xt ) = 1

2
+ eκ − 1

5 + 3eκ
(6.2)

The eigenvalues of the generator are, in decreasing order:

λ1 = 0

λ2 = −2,

λ3 = 1

2
(−5 − eκ +

√
4 + (eκ − 1)2), (6.3)

λ4 = 1

2
(−5 − eκ −

√
4 + (eκ − 1)2)

Remark that, although the generator is not symmetric, all eigenvalues are real
and negative, and the speed of relaxation to equilibrium is speeded up by the
introduction of non-zero κ , i.e., the eigenvalues λ3, λ4 are decreasing functions of
κ , with λ3 → −3, λ4 → −∞ as κ → ∞.

In particular, for the autocorrelation function we have

Eµ ((Xt − µ(X ))(X0 − µ(X ))) = C1e−2t + C2eλ3t + C3eλ4t ≤ Ce−2t (6.4)

with the inequality uniformly in κ . The constants C1, C2, C3 can be computed
explicitly from the eigenvectors which are given by (in the order corresponding to
(6.3):

e1 =
(

3 + eκ

1 + 3eκ
,

4

1 + 3eκ
,

2 + 2eκ

1 + 3eκ
, 1

)

e2 = (−1, 0, 0, 1)

e3 = (q1,−1,−q1, 1) (6.5)

e4 = (q2,−1,−q2, 1),

where q1 and q2 are given by

q1 = 2(2 + √
5 − 2eκ + e2κ )

3 + e2κ + √
5 − 2eκ + e2κ + eκ

√
5 − 2eκ + e2κ

,

q2 = 2(−2 + √
5 − 2eκ + e2κ )

−3 − e2κ + √
5 − 2eκ + e2κ + eκ

√
5 − 2eκ + e2κ

. (6.6)
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6.2. General Two Layer Case

We continue with Yt ∈ {0, 1} but allow now for Xt to take values in a general
finite set {x1, . . . , xn}. We will show that the marginals on a single layer can be
obtained as the stationary distribution of an “effective” Markov generator which
is a non-trivial combination of the generators on both levels. For the Yt process
we still take independent flips between zero and one, at rate 1. The generator of
(Xt , Yt ) then has a two-block structure

L(A, B) =
(

A − I I
I B − I

)
(6.7)

where the identity parts correspond to the flips 0 → 1, i.e., transitions (xi , 0) →
(xi , 1) or (xi , 1) → (xi , 0) (which occur at rate one by hypothesis), and where A, B
are the generators of the Markov process corresponding to the states 0, 1 of the Y
process. The stationary measure can then be written as (µ, ν), where µ, resp. ν is
the marginal of the first Y = 0 resp. second Y = 1 layer. It satisfies the equation

µ(A − I ) + ν = 0

µ + ν(B − I ) = 0 (6.8)

This leads to

µ = ν(I − A)−1

µ = ν(I − B) (6.9)

which gives

ν((I − A)−1 − (I − B)) = 0 (6.10)

This equation expresses that ν is the stationary measure of the process with
“effective generator”

L(A, B) = (I − A)−1 − (I − B) = B +
∫ ∞

0
e−t (SA(t) − I ) (6.11)

where SA(t) = eAt is the semigroup corresponding to the generator A. Remark
that since A, B are generators, L(A, B) is also a generator (since powers of
generators are generators and sums of generators are generators). Similarly, µ is the
stationary measure of the process with generator L(B, A) = A + ∫ ∞

0 e−t (SB(t) −
I ). Remark that if A = B, then the stationary measure of L(A, B) coincides with
the stationary measure of the process with generator A. Indeed let µA denote the
stationary measure of the process with generator A then µA A = 0 = µA(SA(t) −
I ) and hence µAL(A, A) = 0. So in that case (µ, ν) = 1

2 (µA, µA). Summarizing,
we obtained
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Theorem 6.1. Let (Xt , Yt ) be the continuous time Markov chain with generator
(6.7), and (µ, ν) its stationary measure. Then µ, resp. ν is the stationary measure
of the process with generator (6.11). If A = B, then (µ, ν) = 1

2 (µA, µA), where
µA is the stationary measure of the process with generator A.

This theorem shows that the marginals of a multilayer Markov process can
be reduced to the computation of the stationary distribution of “effective Markov
chains” which arise from the generators A1, . . . , An of the generators for given
layers by a sequence of operations L(·, ·), L(·, ·).

7. DISCUSSION

We have addressed the issue of a tethered polymer in shear flow that is
described by coupled multilayer Markov chains. We prove that for such a system a
unique stationary measure exists, when the end point of the chain moves in potential
that is quadratic in the x and y directions or stronger. Estimates for the E(Xt ) and
the variance of Xt were derived. Moreover, we calculated the stationary measure
in the case of a harmonically bound chain numerically. The probability measure
µX (x) that we obtained exhibits the interesting feature that it is nonmonotonic,
but has multiple maxima. This surprising fact accounts very well for the cyclic
dynamics that is typically observed in systems in which a tethered DNA chain
is subjected to shear flow with a sufficiently high shear rate. Moreover, we have
demonstrated that the stationary probability measure can in fact be calculated
exactly for a number a finite state driven Markov processes. Such an approach
may be useful for other systems than polymers, which can also be described by
driven Markov processes. Our approach to the tethered chain problem illustrates
how the stochastic view point may lead to new insights about familiar problems
in the dynamics in of polymer chains.
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